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ABSTRACT Visual data provide a wealth of information to better understand the world around us. A tremendous amount of visual data is 
collected in civil engineering applications through efforts such as scientific experiments, field surveys, resource management, and recon-

naissance missions. Among these efforts, visual data generate crucial and abundant information evaluating the condition of a civil structure. 

As a typical example, during a disaster such as a natural catastrophe or industrial explosion, vast amounts of perishable image data are col-
lected that may be used to generate new knowledge from the consequences of that event. However, not only does this process require time-

consuming data collection by human engineers, it is also tedious and expensive to manually search through these data sets to find the most 

informative images. Autonomous collection, processing and analysis offer great potential to support structural evaluation. In this study, we 
propose a novel autonomous evaluation method to examine large volumes of images. Recent deep convolutional neural network (CNN) al-

gorithms are applied to extract visual information from the collected images. Task-oriented engineering knowledge and experience are in-

corporated into the procedures to increase accuracy. The target application addressed in this study is post-disaster building damage evalua-
tion. Illustration of the technique and capabilities for collapse classification is demonstrated using large-scale images gathered from past 

earthquake events. 

 

 

 

1 INTRODUCTION 

An astonishing amount of visual data is being col-

lected worldwide through scientific experiments and 

field surveys in civil engineering. For example, dur-

ing each natural disaster, vast amounts of perishable 

visual data are collected formally by teams of ex-

perts. That data is collected in order to generate new 

knowledge by learning from that event. With the 

availability of ubiquitous visual data sources, such as 

social media, news media and unmanned aerial vehi-

cles for hire, large volumes of useful visual data are 

available for various purposes (Voigt et al. 2007; 

Yates & Paquette 2011; Computing Community 

Consortium 2013; Measure & American Red Cross 

2015; Wang et al. 2015). Currently the major ap-

proach available to responders and researchers for the 

analysis of such data is tedious manual sorting and 

analysis of these photographs or videos. Only a small 

portion of the growing volumes of visual data col-

lected are actually being used for research and ex-

tracting information for onsite decisions. Engineers 

must exploit the power of information technology to 

extract such information in an efficient manner. 

Autonomous collection, processing and analysis of 

data offer great potential to aid the human decision 

maker. Whether he/she is conducting scientific re-

search, or making a decision, the human operator and 

decision maker needs to quickly sift and sort visual 

data to identify and evaluate the important scenes. 

There is a compelling need to provide support to 

these human decision makers by giving them the ana-



lytic power to search, filter, prioritize, classify and 

annotate hundreds or thousands of images. 

In recent years, powerful computer vision methods 

and machine learning algorithms have been estab-

lished within computer science and engineering, and 

related disciplines. In some applications these have 

nearly reached human-level performance (Taigman et 

al. 2014; He et al. 2015). These methods have been 

considered for a broad range of applications, ranging 

from speech or text recognition to autonomous driv-

ing (Ciresan et al. 2012; Hannun et al. 2014; Chen et 

al. 2015). In civil engineering, vision-based remote 

or crowdsourcing structural inspection and construc-

tion management techniques have been researched 

and have achieved improvements in accuracy and ef-

ficiency (Golparvar-Fard et al. 2009; Jahanshahi et 

al. 2009; Ghosh et al. 2011; Zhu et al. 2011; German 

et al. 2012, 2013; Torok et al. 2013).  

Previously developed techniques have been vali-

dated for specific damage types using a small quanti-

ty of images that were collected with the intension of 

using them for a specific purpose or application. 

However, in real circumstances during a disaster with 

realistic time and resource constraints, there is no 

guarantee that one may be able to collect favorable 

images for such a specific purpose due to the large 

uncertainty of locations, viewpoints, or contents. 

Thus, classification and filtering of the images will 

be able to support the decision-maker, particularly 

when time is limited. Furthermore, there is no assur-

ance that these methods will be able to handle large-

scale, complex, and unstructured images in such a 

way as to be tractable. 

At this time such methods, when used in isolation, 

are still severely limited in their ability to extract use-

ful information. Real-world visual data are quite di-

verse in nature (e.g. quality, resolution, subject, com-

position, illumination). And although these 

traditional computer vision methods are quite power-

ful, we still lack a good understanding of how to im-

plement them in a domain-centric and task-oriented 

manner. Objects of interest to a civil engineer often 

need to be understood and analyzed in their spatial 

configuration as well as in their background context, 

and to extract meaningful information such analysis 

should be firmly based on engineering experience 

and knowledge.  

In this paper, we develop and demonstrate a novel 

method for autonomous big data analytics that is in-

tended to support decision-making in the field. The 

target application we addressed here is post-event 

building evaluation during a disaster. We implement 

task-oriented computer vision methods capable of de-

tection, classification and evaluation of large vol-

umes of visual data. A key factor in the method is 

that we incorporate prior knowledge from our target 

application, while we also investigate and utilize re-

quired optimal resolution of images for the scene 

classification and object detection actions. Recently 

developed deep convolutional neural networks 

(CNN) algorithm are applied for image classification 

and object detection, while ensuring success by inte-

grating engineering domain knowledge into the pro-

cedure (Krizhevsky et al. 2012; Girshick et al. 2013; 

Russakovsky et al. 2014; Zhou et al. 2014; Simonyan 

& Zisserman 2014). Here we provide a feasible solu-

tion for analyzing a large-scale collection of real im-

ages from disasters. The proposed method can be ex-

panded to incorporate new or existing damage 

detection methods for broad application in a range of 

disasters.  

 

2 PROPOSED DAMAGE EVALUATION 

METHOD 

An overview of the procedure developed here is 

shown in Figure 1. In step 1, images collected during 

a disaster are automatically filtered and prioritized 

based on available metadata from the images. 

Metadata acquired at the time of image acquisition 

includes geospatial and temporal (e.g. time/date, 

GPS) data, as well as information relevant to the 

event itself (e.g. previous building images, event in-

tensity map). When available, these items can be in-

corporated into the overall process. The use of such 

metadata is beneficial for rapid access and flexible 

mining of a set of valuable images needed to explore 

their visual contents. In step 2, images are classified 

according to their content, particularly in terms of 

containing scenes associated with the target applica-

tion. Scenes may be defined in terms of single or 

multiple objects and their spatial configuration. For 

instance, a scene of a building façade is composed of 

one or more objects and their spatial arrangement in-

cluding an entrance at the bottom, and an array of 



windows or floor borders. Because scenes are typi-

cally recognized by low-dimensional features (e.g. 

general shape, colors, or compositions) and need not 

be interpreted using a detailed appearance of objects, 

they can readily be recognized in low resolution im-

ages. Thus, efficient and rapid computation is possi-

ble in this step. In step 3, specified target objects are 

identified and localized within the scenes classified 

in step 2. Here, the target objects encompass damage 

(e.g. spalling or cracking), and also the objects in 

which such damage is present (e.g. beam, column, 

wall). They may also include geometric or pattern 

features (e.g. window opening, stair-step cracking), 

which may be used subsequently for damage evalua-

tion. Such object and scene categories must be de-

signed and defined based on the applications for 

which they will be used. Lastly, in step 4, damage 

contained in those images is evaluated based on prior 

knowledge of the target applications. This step is per-

formed to understand damage using its presence as 

well as its location on the object, appearance or sur-

rounding objects. The steps proposed here are flexi-

ble depending on level of information provided with 

images. 

A good example to illustrate the proposed concept 

is buckling detection after an earthquake. Buckling is 

detected by observing whether vertical rebar on a 

structural column is exposed and yielded. Such a 

domain-based definition of the problem provides 

good prior information to design the proposed tech-

nique. Instead of direct detection of rebar across a 

large collection of high-resolution images, the pro-

posed method includes several steps: metadata filter-

ing (with respect to location, date, or time), scene 

classification of indoor or outdoor building (or build-

ing façade), column/spalling object detection, and re-

bar detection. These steps are performed sequentially 

by gradually increasing the resolution of the images 

used for the relevant steps. Finally, we are able to 

evaluate the condition (e.g. bending or break) from 

the high resolution image containing the detected re-

bar. At each step, the number of images that are 

needed for processing with higher resolution de-

creases at each step. Thus, this approach is especially 

appropriate when time and resource constraints exist. 

 

 

Figure 1. Overview of the proposed damage evaluation method 

 

3 COLLAPSE CLASSIFICATION 

As a pilot study, we use the case of collapse to 

demonstrate scene classification in the proposed 

method. The term collapse here refers to both signifi-

cant damage/collapse of the building structure, as 

well as major damage/collapse of a single structural 

component. The reasons for selecting this damage 

case are that (1) collapse of buildings or their com-

ponents represents a major mode of damage that is of 

interest in earthquake reconnaissance; (2) a large 

number of appropriate images are available for train-

ing and validation; and (3) there is no existing anno-

tation image database for this situation. To perform 

this case study, a large annotation image collection is 

established and used for validation of the method. 

We first introduce our post-event reconnaissance 

image data collection. We have gathered a collection 

of 67,000 color images acquired by various research-

ers and practitioners after past natural disasters in-

cluding hurricane, tornado and seismic events (e.g., 

from datacenterhub.org at Purdue University, disaster 

responders, or Earthquake Engineering Research In-

stitute (eeri.org)). Nearly all of these images preserve 

the original quality (resolution) as well as the basic 

information (e.g. date, time, and event), and a small 

portion of images have GPS information or a picture 

of a GPS navigator. However, no annotation was 

available for the visual contents of the images. At 

this time, the distribution across the types of events is 

earthquake (90%), hurricane (6%), tornado (3%), and 



others (1%). These images are collected from several 

different events such as earthquakes (e.g. Haiti in 

2010, L’Aquila in 2009, Nepal in 2015), hurricanes 

(e.g. Florida in 2004, Texas in 2008), tornadoes 

(Florida in 2007; Greensburg in 2007). We will con-

tinue to collect images from such events to further in-

tegrate into the collection. 

For assessment of the proposed technique, and al-

gorithmic training, all images are first manually an-

notated using in-house annotation software. A single 

image is shown centered in the screen and annotators 

are asked to answer a yes or no question of “Does the 

image contain a collapse scene?”. Based on our expe-

rience, such a binary classification yields better re-

sults than multiple choice questions. Manual annota-

tion can be quite taxing for the human if there are 

several buttons/options and there is high potential for 

error.  

Figure 2 shows several sample images used for 

collapse scene classification (from datacenterhub.org 

at Purdue University). For collapse classification, the 

dataset is composed of 1918 collapsed building and 

building components (b&bc) data as positive and 

3427 other data as negative, which are composed of 

minor damage b&bc, irrelevant images, and undam-

aged b&bc in Figure 2. Such sampling of the nega-

tive dataset is designed to represent non-collapse im-

age collection from a real earthquake reconnaissance 

scenario.  

As mentioned in the introduction, the CNN algo-

rithm will be implemented for collapse classification. 

In the last few years, CNNs have led to major break-

throughs in computer vision areas and have enabled 

the development of high-level abstractions using 

large-scale databases of general everyday objects. 

CNNs typically have one or more convolutional lay-

ers tied with weights and pooling layers to extract 

scale, translation and rotation tolerant features, and 

fully connected layers connected with these features 

classify image category or object(s). The parameters 

of CNNs are trained in advance of their implementa-

tion using large-scale training image data (Krizhev-

sky et al. 2012; Girshick et al. 2013; Russakovsky et 

al. 2014; Zhou et al. 2014; Simonyan & Zisserman 

2014). 

 

 

Figure 2. Sample images used for collapse scene classification: (a) 
collapse buildings and building components (b&bc), (b) minor 

b&bc, (c) irrelevant images, and (d) undamaged b&bc. (a) is as-

signed in a positive class and the others are in a negative class. 

 

In this study, we used Vgg-f CNN architecture 

implemented in MatConvNet (Vedaldi & Lenc 

2014), which comprises 8 learnable layers, 5 of 

which are convolutional, and the last 3 are fully-

connected. Fast processing is ensured by the 4 pixel 

stride in the first convolutional layer. In the data 

augmentation process which produces a suitable set 

of input images for the CNN, a square region of input 

images are randomly cropped in original images fol-

lowed by resizing them as 224 x 224 pixels. In each 

epoch, a batch at each iteration is assigned using ran-

domly ordered pictures, and these data are augment-

ed. Stochastic gradient descent with a batch of imag-

es are learned to optimize the parameters of the 

network. 

 



 

Figure 3. Examples of the collapse classification result: (a) classi-
fication of positive images and (b) classification of negative imag-

es. Note that the text labels indicate classification results, and blue 

and red colors are true and false classification, respectively (e.g. an 
image in (a) having a label of “collapse” in blue is true classifica-

tion collapse building image) 

 

A workstation having a Xeon E5-2609 CPU, 12 

GB memory and two GPU, NVidia Titan X and 

Telsa k40, a total of 24 GB video memory is used for 

training and testing the algorithm. The MatConvNet 

library installed on Matlab 2014b is used for this 

demonstration (Vedaldi & Lenc 2014). To obtain 

these results, 80% of annotated images are used for 

training and the remainder are used for testing and 

assessment of the classifiers. Less than 20 epochs are 

required to reach convergence and this training pro-

cessing required approximately 10 hours.  

Finally, in this demonstration we obtain rates of 

86.6% true positive (true collapse detection), 13.3% 

of false-positive, and 93.7% of false negative, respec-

tively. The proposed collapse classification success-

fully attains a relatively high rate for true-positives. 

A sample of images showing the classification results 

are shown in Figure 3. Note that these rates will vary 

slightly depending on CNN architectures and their 

parameters. Overall the performance of this approach 

is quite successful. The method shows great promise 

for supporting decisions in the field and for enabling 

research using large volumes of image data.  

 

4 CONCLUSION 

A novel method for automated post-disaster image 

classification is proposed to perform processing and 

analyzing big visual data. The method is demonstrat-

ed on a specific example classification focused on 

collapse classification. However, the general method 

can be applied to other civil applications that use 

large-scale visual data. In the future we plan to in-

corporate and validate a broader array of damage 

evaluation methods for broader application. 
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