
 

 

Applications of Computer Vision in Structural Health Monitoring 
S.J. Dyke1, C.M. Yeum,1 C. Silva, 1 J. Demo2 

 (1) Purdue University – United States, (2) Luna Innovation Inc. – United States 
 
Abstract 
 
Recent advances in computer vision to explore new sensors and sensing platforms have shed light 
on the potential for autonomous structural health monitoring in civil engineering structures. The use 
of low-cost, high performance cameras in conjunction with aerial or embedded sensing platforms, 
can overcome spatial and temporal limitations typically associated with visual sensing. Moreover, 
the availability of well-established algorithms in computer vision enable quite efficient and rapid 
analysis of the visual data collected. However, beyond simply processing these images, aiming to 
replicate the actions and abilities of human vision enables autonomous decision-making. Several 
computer vision techniques, such as image processing, object detection, or multi-view geometry, 
are increasingly being implemented for a variety of applications in civil engineering. This paper 
considers the novel use of computer vision methods to address two promising SHM applications in 
civil engineering: (1) visual inspection and (2) vehicle classification. The main contribution of the 
investigation is to provide a new framework for automated visual inspection using a large volume 
of images. The use of high-level image processing and analysis, when integrated with prior 
knowledge of general damage features, enables reliable visual inspection. The second investigation 
demonstrates the novel repurposing of object detection techniques that originate from computer 
vision methods to address vehicle classification. It is expected that repurposing of such algorithms 
has potential to impact civil engineering needs, among those in other fields, at a variety of levels. 
  



 

 

1. Introduction 
 
Visual sensing provides crucial and abundant information regarding the condition of a 

structure. Because visual changes provide obvious warning signs that the structural condition is 
deteriorating, visual inspection is still the primary method used for structural assessment. For 
bridges, most decisions relating to bridge maintenance are based on visual inspections. However, 
human oriented visual sensing has certain limitations, especially in large-scale structures. 
Limitations revolve around consistency, accessibility, safety and efficiency. Also, highly qualitative 
and subjective evaluation are inevitable in human vision (Phares, 2001).  

To overcome these limitations, many researchers have focused on the development of 
algorithms and techniques for vision based autonomous visual inspection to facilitate structural 
health monitoring (SHM) (Jahanshahi, et al. 2009; Abdel-Qader, et al. 2003; Zhu, et al. 2011; 
Sinha, et al. 2006). These methods have been found to be reliable and accurate for various 
inspection tasks. Unfortunately, they are rarely implemented in real applications to date, especially 
in civil engineering. Civil structures are relatively large and exist in harsh environments, 
introducing challenges in accessing various regions for viewing the structure, and thus in collecting 
images. Moreover, the analysis of large quantities of images are computationally expensive using 
conventional image processing techniques. However, recent developments in machine vision 
technologies are enabling more efficient and cost effective visual inspection.  

Recent advances in the various sensors and sensing systems achieve remarkable visual 
sensing capabilities, enhancing granularity in both time and space using automated methods. As 
imaging sensors have become smaller, cheaper and more powerful, quite a large number of sensors 
can be spatially distributed and are thus readily available for fulfilling the various essential tasks. 
Some sensors, such as wireless sensor nodes, are intended to be embedded in structures, and have 
appropriate embedded computational processing capabilities (Lynch, et al. 2006). Moreover, 
recently commercialized drones (unmanned aerial vehicles) have expanded sensor mobility from 
ground to sky (Ortiz, 2014; Angel aerial survey, 2014; US Aerial Video, 2014), and a head-
mounted optical display such as Google Glass™ or action cameras has received significant attention 
for its ability to record and learn human actions (Google, 2015; GoPro, 2015). The new 
opportunities facilitated through availability of these powerful sensors and sensing systems are 
beginning to compete with human vision inspection in terms of cost and performance. 

Once visual data is collected, it must be organized, processed and analyzed to extract useful 
information. The field of computer vision is devoted to such problems of interpreting the world 
through the analysis of visual images. Beyond simply processing images, recent advances focus on 
replicating the abilities of human vision such as search, retrieval or learning. Automation of these 
processes will enable quite efficient and rapid analysis. Moreover, integrating these processes 
across multiple images, while incorporating their spatial and temporal information, will greatly 
expand their usability in higher dimensions and provide deeper insight. This capability will provide 
the capacity for automated analysis to support decision-making beyond that of human interpretation 
(Szeliski, 2010; Hartley, et al. 2003).  

The opportunities associated with automated processing and advanced sensing systems have 
accelerated the work to develop autonomous visual methods for SHM. Futuristic visual inspection 
might be imagined as follows. An unmanned aerial vehicle (UAV) equipped with a high resolution 
camera or vision sensors, such as infrared or thermal camera, arrives at candidate structures or 
construction sites. Following a flying path designed a priori, using GPS, the UAV automatically 
flies the designated route to collect and record images. Using previous inspection records, this 



 

 

flying path is periodically updated to target more vulnerable components. For example, it may be 
important to take more images in areas of interest that were detected and identified in previous 
flights. The UAV transmits the collected images to a base station. At the base station, processing 
takes place across the large volume of images. The image processing at this point be focused on 
many purposes. Typical examples include oversight of the construction process and equipment, 
inspection of damage on the structure, or post-hazard assessments to improve situational awareness. 
The system automatically generates an inspection report to inform high-level decisions by the 
owner or engineer. Furthermore, by preserving such reports and documenting the decisions and 
actions taken over the lifecycle of the structure, such a system will contain a complete record of the 
condition of the structure and decisions made, and would provide evidence to facilitate better 
decision-making for other structures. Thus, the inspection process would evolve over time, 
becoming smarter and much more efficient. 

Herein we first introduce a new approach for autonomous visual inspection, increasing the 
feasibility of this future vision for condition assessment and lifecycle management. The use of high-
level computer vision methods, when integrated with prior knowledge of likely vulnerabilities and 
general damage features, enables reliable visual inspection. Second, we explore the translation of 
the technologies used in the first application to tackle an entirely different problem, which is vehicle 
classification on a mobile bridge. The problem here is not an application of visual inspection. 
However, it is shown that repurposing of the same object detection algorithms has potential to 
alleviate challenges in other civil engineering fields, among those in other fields. After a brief 
literature review of image based autonomous visual inspection in civil engineering, we focus on 
these two applications demonstrating successful application of computer vision methods to solve 
two very different problems.  
 
2. Literature Review 
 

Vision based autonomous inspection is not a new concept and has been broadly developed 
and used for civil, mechanical or aerospace structures. In the past many researchers have proposed 
vision based visual inspection techniques by automatically performing the specific tasks set forth in 
the manual (Indiana Department of Transportation, 2013). However, for civil engineering, the 
major tasks encompassed by visual inspection can be grouped according to the two most common 
materials used, concrete and steel, which exhibit entirely different characteristics when it comes to 
damage.  

Defects in concrete, similar to asphalt pavement, typically manifest as cracks or 
delaminations. First, cracking is a major mode of damage in concrete, and inevitably occurs at 
initiation or during operation. However, a crack can be the result of one or a combination of factors 
such as drying shrinkage, thermal contraction, restraint shortening, subgrade settlement, and applied 
load (Portland Cement, 2001). Thus, the occurrence of a crack in concrete is not necessarily a cause 
for concern, but should be left to the judgment of the inspector. The appearance of a crack has a 
mostly clear low intensity than background and its pattern is a straight or curved line with a 
relatively uniform width. Thus, intensity based edge detection and segmentation approaches are 
widely used (Abdel-Qader, et al. 2003; Jahanshahi, et al. 2009; Yamaguchi, et al. 2010). However, 
the challenges include: (1) similar appearance as that of other edges present, (2) connection of 
disjointed cracks detected, (3) scale estimation, and (4) image corruption due to environmental 
conditions, such as shadows or dirt. Various techniques have been proposed to overcome these 
challenges such as statistically learning to identify crack appearance for classification, 



 

 

quantification shadow-removal and connecting crack fragment (Zhang, et al. 2014; Jahanshahi, et al. 
2013; Zou, et al. 2012; Subirats, et al. 2006). Second, delamination, such as flaking or spalling, is 
another likely damage scenario that could be investigated with visual methods. Abrupt delamination 
damage like spalling or potholes, can pose damage to users as well as accelerating another mode of 
damage, such as corrosion on steel rebar. Texture analysis and shape extraction techniques are used 
to extract damage areas in 2D (German, 2012) and multi-view geometry is applied to obtain 
geometry information in 3D (Koch, 2011; Torok, 2013).  
 Steel is a uniform solid material, and yet it is susceptible to environmental and operational 
conditions. Corrosion is a common source of damage in steel, causing material degradation. 
Corrosion appears as rust on uncoated, visible surfaces, and color based corrosion detection and 
texture based corrosion have been widely studied (Lee, et al. 2006; Chen, et al. 2009, 2012; 
Jahanshahi, et al. 2012; Bonnin-Pascual, 2014). Second, steel cracks, mainly fatigue cracks, occur 
at areas of stress concentration and frequently originate at a flaw associated with a weld or material 
inconsistency. Detection of cracks in steel can be more difficult than in concrete because the cracks 
have thin, shiny edges and may be invisible depending on lighting conditions and viewpoints. 
Similar to cracks in concrete, edge-detection and segmentation techniques are used for detection of 
visibly clear cracks, but they would require higher resolution images or large crack sizes for ready 
detection (Neogi, 2014). 
 
3. Vision based Automated Visual Inspection 
  
 Visual inspection is the customary approach to identify and evaluate faults in bridges. 
Current procedures required for human inspection processes demand long inspection times to 
examine bridges, especially when they are large or difficult to be accessed. Also, the reliance on an 
inspector’s subjective or empirical knowledge has the potential to induce false evaluation or 
inconsistencies (Phares, et al. 2001). To address such difficulties, a vision based inspection 
technique is proposed. Automatic capture, processing and analysis of a large volume of collected 
images is enabled, with minimal restrictions on the images captured. Images to be used can be 
captured without restricting or specifying the angles and positions of the cameras, and there is no 
need for prior camera calibration. In this study, automated crack detection is demonstrated using 
images collected from an unmanned aerial vehicle (UAV), for instance, using a drone. 

Consider the question: Given a large volume of images, perhaps from an aerial vehicle, 
would it be feasible to detect damage in a realistic structure using currently available vision based 
damage detection techniques? To answer this question, multiple photographs were acquired from a 
rusty, steel beam with a real fatigue crack initiating from one of the bolt holes. Data analysis was 
performed using image processing techniques available in the literature (Jahanshahi, et al. 2009). In 
this examination, two major issues are identified, which need to be addressed to enable automated, 
effective and efficient vision based inspection. First, many false-positive alarms and misdetections 
may result when simply searching for cracks over the entire area of an image. Several crack-like 
features are present in most images such as structure boundaries, wires, or corrosion edges. These 
may cause either incorrect detection or a failure to detect real cracks due to its narrow width. 
However, human inspectors can typically detect the actual crack. An inspector’s prior knowledge 
about a crack’s typical appearance and characteristics is helpful in determining if a crack is present. 
In this case, the relevant information is that new cracks on a steel structure have thin, shiny edges, 
and often initiate and propagate from bolt holes (Indiana Department of Transportation, 2013). 
These features will draw the inspector’s attention to the bolts and nearby areas, facilitating crack 



 

 

detection in these more vulnerable areas. A second issue observed is that the crack may or may not 
be visible depending on the viewpoint from which the image is acquired. This concludes that same 
scene may appear to be very different from multiple viewpoints, and many images may be needed 
to detect the crack without knowing how it originated or propagated. Much of the previous research, 
of course, has unconsciously considered these two issues. Images are collected under controlled 
circumstances, with camera positions or angles chosen based on the appearance and location of 
cracks. However, in reality, the capture of sufficiently good images taken under the “best” 
conditions cannot be predicted or expected because the crack location, crack direction and lighting 
direction cannot be known in advance. Furthermore, it is hard to precisely and continuously control 
camera positions and angles when it is installed in the UAV.  

Rather than searching for cracks throughout entire images, the specific objects that have 
areas susceptible to cracks (bolts in this study) are first detected in each image. This initial step 
greatly increases the detectability of cracks by narrowing down searching areas and damage scales 
in the acquired images. Next, object detection and grouping techniques available for computer 
vision can be implemented to extract, match and group the same objects from many angles across 
the entire large set of images.  

 
Figure 2. Steps in the proposed automated visual inspection technique 

 
A diagram of the proposed technique is provided in Fig. 2. First, in Fig. 2 (a) images of the 

structure are collected from many angles using the chosen image acquisition equipment (e.g., aerial 
cameras or inspection robots). Second, in Fig. 2 (b) the targeted structural components (called 
objects), which are susceptible to crack damage, are detected and extracted from each of the 
images. The object patch indicates one such object and its nearby area where the presence of a 
crack damage is more likely. Third, in Fig. 2 (c), common object patches (corresponding to the 
same object) across the collection of images are matched and grouped. Finally, in Fig. 2 (d), the 
proposed crack detection technique diagnoses that a crack exists in the structural components. 

A rusty, full-scale I-beam having 68 bolts, as shown in Fig. 3, is used to validate the 
proposed techniques. Rather than cycling the beam to produce fatigue cracks on the beam, two 
artificial scratches are made with an awl at locations A and B. Fig 2 shows sample images and 
outcomes in each steps. Due to space limitations, all of the details regarding intermediate 
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parametric and numeric outcomes (Yeum and Dyke, 2015). All objects, identified as the damage 
sensitive regions, are properly detected and grouped, and the two induced artificial cracks are 
successfully detected using this large collection of images.  

 
In this application, to demonstrate one typical automated visual inspection task, we select to 

occurrence of cracks occurring near bolts on a steel structure for demonstration. However, users can 
extend the proposed visual inspection framework to conduct other types of visual inspection. For 
example, suppose that corrosion or crack damage in gusset plates is the damage case of interest. 
The gusset plates would become the “objects” and the technique proposed would be applied to 
extract images of individual gusset plate taken from various angles. Users would be able to analyze 
images of all gusset plates in a bridge by applying a suitable crack detection criterion, as 
demonstrated in this application.   
 
4. Vehicle Classification on a Mobile Bridge  
 

A mobile bridge, shown in Fig. 4, is an essential structure to facilitate short-term mobility 
when faced with natural or man-made obstacles (e.g., General Dynamics, 2015). When a mobile 
bridge is deployed, it is necessary to rapidly confirm that it is safe before use or entry. Typically, 
such an evaluation is based on the usage history, and thus a simple method for accurately 
determining vehicle types and number of crossings is needed. There are several factors that must be 
considered here. First, the usage pattern is irregular. The bridge is intensively used when deployed, 
but the rest of time it may be stored. Second, its behavior is often non-linear with a need for 
carrying high static loads and experiencing sudden impacts, and vehicle loads often exceed the 
weight of the bridge itself. Lastly, it is used under a variety of boundary and environmental 
conditions. Weather conditions and surface conditions will both influence the boundary conditions. 
A passive sensor has been used in the past, known as a Remaining Service Life Indicator. It uses 
four metallic “filaments” that are designed to crack after a specific number of vehicle crossings 
(Department of the Army, 2006). However, a more suitable approach would help to collect more 
detailed information regarding usage.  

For bridge applications, there are a couple of commercialized systems for estimating classes 
of vehicles or their axle weights, called bridge weigh-in-motion (B-WIM) (Cestel, 2015). Unlike 
conventional WIM techniques, sensors are installed beneath the bridge to avoid modifications to the 
bridge deck or addition of sensors on the bridge surface. However, there may be concerns with 
ensuring long term sensor adhesion for strain sensors. 

 
Figure 3. Specimen: a rusty, steel beam with 68 nearl identical bolts 



 

 

The technique proposed here will monitor bridge usage patterns using embedded low-power 
wireless accelerometers. It is intended to estimate the class of each vehicle traversing the bridge 
using an acceleration measurement. We make the assumption that one vehicle is crossing the bridge 
at a time, which is quite reasonable for typical mobile/temporary bridges. In this technique, an 
object detection algorithm from computer vision is also implemented to extract features and train 
classifiers. Once classifiers are constructed for each class of vehicle, users would not need to 
perform further manual calibration on site for classifying vehicles. 

The basic concept behind the proposed technique is that each vehicle crossing the bridge 
produces unique dynamic patterns, which makes it distinguishable from other vehicles. Even under 
reasonable variations in the vehicle speed or mass, or if data is collected at different locations on the 
bridge, it can be assumed that those patterns are preserved. This concept is analogous to object 
recognition. Even if we acquire photos of objects with different angles or lighting conditions, a 
human can intuitively notice the “difference” of those objects by automatically integrating several 
features and overall patterns. Modern object detection and classification algorithms have tried to 
mimic the human’s “difference” detection capability and have made tremendous gains (Viola, et al. 
2001). In this sense, the proposed technique applies those powerful algorithms to tackle the vehicle 
classification problem. In this study, an established object detection algorithm, proposed by Viola 
and Jones, is applied for features selection and classification (Viola, et al. 2001; Bishop, 2006). The 
feature selection process used here is completely automated and does not rely on prior information 
about the objects. When the acceleration signals are transformed into a form of images and are 
labeled as vehicles, this method can produce robust and reliable classification results.  

However, in the mobile bridge application, patterns produced from each vehicle may not be 
consistent across under different installation conditions of the bridge. There is the challenge that the 
dynamic characteristics of the bridge are different based on the installation conditions. To address 
this problem, the proposed technique first identifies the closest training data set by driving a known 
(reference) vehicle across the bridge just after bridge installation. The training data set is used to 
identify the appropriate data patterns to use for vehicle classification given the bridge setup. The 
reference vehicle may be, for example, a truck responsible for transporting the bridge, but any 
vehicle might be used for this purpose. Once the dynamic patterns associated with the bridge setup 
are identified, the same algorithm is used for classifying and count the vehicles.  

The overall procedure is divided into two steps: training and testing. In the training process, 
different bridge setups are used to classify the vehicles. Collection of training data sets under many 
different bridge conditions is recommended to cope with real bridge implementation. Each training 
data set has classifiers for all vehicles as well as a classifier for the corresponding training data set. 
Once the bridge is installed, the reference vehicle would drive across the bridge to identify the 
closest training data set. Then, classifiers obtained in the training data set are used for classifying 
the vehicle. Haar features based boosted classifiers are used for this technique, which was proposed 
originally by Viola and Jones (2001). First, the raw acceleration signals are cropped to remove 
unnecessary portions (i.e. before entrance, and after exit). A moving root-mean-square with a 
proper threshold is used for accurate estimation of the times for the vehicle entrance and exit. 
Second, the signals are converted into a spectrogram for analysis in the time and frequency 
domains, and forming a two dimensional image containing this view of the acceleration response of 
the bridge. A wavelet transform may also be used for this process. With proper tuning of the 
spectrogram parameters, including the number of time increments and the number of spectral lines 
in the FFT, an appropriate image is generated. Similar to the case of object detection, the use of 
high resolution images of this spectrogram may help with classification, but does not greatly impact 



 

 

detection rates. Thus, users will need to tune these parameters depending on detection rates as well 
as computational capabilities. Third, Haar-like wavelet feature windows are applied to the 
spectrogram images for feature extraction. The use of integral images provides an effective method 
for calculating the relevant features. Finally, based on these features, a robust classifier is designed 
to determine whether the features indicates a specific vehicle or not. A binary classifier is used, and 
each vehicle will have its own classifier corresponding a training data set.   

 
Figure 4. A typical mobile bridge (General Dynamics, 2015) 

 
In this study, a boosting algorithm is implemented to produce robust classifiers. Boosting is 

a way of combining many weak classifiers to produce a strong classifier. By updating different 
weights of weak classifiers adaptively depending on misclassification errors, the optimum strong 
classifier, which minimizes misclassification errors, can be obtained. Several boosting algorithms 
have been introduced in the literature, but in this study, the gentle boost algorithm, proposed by 
Friedman, is used because it is known to be simple to implement, numerically robust and 
experimentally proven for objection detection (Torralba, et al. 2004; Friedman, et al. 2001). The 
details of the gentle boost algorithm can be found in (Friedman, et al. 2001).  

To validate the proposed technique, an experiment is conducted using a typical mobile 
bridge in Fig. 4. This preliminary experiment is intended to illustrate the general concept of the 
technique. A total of 12 wired accelerometers, 6 on each side, are installed to collect typical data on 
vertical vibrations. Two different vehicles (sport utility vehicles) each with two different speeds 
(unknown) drive across the bridge four times each. A total of 192 data samples are obtained, and 
each is labeled as either vehicle 1 (V1) or vehicle 2 (V2). In this experiment, no variation of the 
bridge conditions were possible, such as boundaries or bridge length. Thus, there is only one 
training data set in this case. Among the 192 data samples, 20 data are randomly selected for 
validation of the method and the remainder are used for training.  

Using this experimental data, we classify the 20 random test cases of the crossing of the two 
vehicles using the proposed technique. Final classification results are shown in Fig. 5. The blue 
circle and red x are the true and estimated vehicle classes, respectively. Nineteen samples are 
correctly classified among the twenty data records. The procedure is repeated several times with a 
different set of training and evaluation data, and in each case at least nineteen correct classifications 
were obtained. Further investigation of the method will take place, with more vehicles and varying 
bridge conditions. The results of this preliminary experiment indicate that: (1) unique patterns exist 
for each vehicle’s acceleration signal, and (2) correct extraction of those patterns facilitates vehicle 
classification with the proposed procedure. 



 

 

 
Figure 5. A result of two vehicle classification results 

  
5. Summary   
 
This study considers the implementation of computer vision technology to solve two different 
problems in SHM supporting decision making: visual inspection and vehicle classification. Various 
techniques in computer vision, from image processing to machine learning, are used for each of the 
tasks producing successful results. It is anticipated that such repurposing of technology has the 
potential to address several other applications within SHM.  
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