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Motivation
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Surface-mountable piezoelectric transducer based

SHM techniques have been widely used for

monitoring of aircraft structures.

How can we instantaneously extract a user-

specified fundamental Lamb wave mode from

measured Lamb wave signals using one sided

attached PZT transducers?

Time
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 Research objectives

The Objective of This Study 

 Advantages of the proposed technique

- PZTs need to be placed only a single surface of the structure

- Mode decomposition can be performed at any desired frequency without physical

adjustment of the PZT size and/or spacing

- Both S0 and A0 modes can be simultaneously decoupled and identified at any driving

frequency

- A circular design of the dual PZT allows omni-directional Lamb wave decomposition

Decomposition of fundamental Lamb wave (S0 and A0) modes from measured signals

without PZT size adjustment and frequency tuning

4
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 Placement of collocated PZTs on both surfaces

Using PZT poling directionality in Lamb wave

propagation [Viktorov(1967),Kim (2007)]

Limitation: Accessibility to both surfaces of a

structure and difficulty of precise placement of

collocated PZTs

 Tuning of driving frequency and/or the PZT size

Selection of a specific frequency and/or the PZT size

where the target mode is predominant [Giurgitiu

(2005)]

Limitation: Possible only at a specific frequency and

for a fixed PZT size

Literature Review 
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Description of a Dual PZT and Signal Notation

Piezo electric material

Nickel layer

Side

Top

1.9

1.9

Height = 2

26

38

Unit : mm

10

4

2

Thickness = 0.5

Flat type 

connector
Dual PZT

(Excitation) (Sensing)

V13

(Excitation) (Sensing)

V32

The subscripts, 1, 2 and 3 denote the entire dual

PZT, the other ring and the inner circular PZT,

Respectively.

Schematic drawing and picture of the dual PZT

Signals obtained by dual PZTs

, 1,2 3ijV i and j and

By activating different parts of the excitation and

sensing dual PZTs, nine different response

signals ( Vij )
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Overview of the Proposed Mode Decomposition Technique

(Excitation) (Sensing)

V31

(Excitation) (Sensing)

V22
Input

A0 mode

S0 mode

V31

V22

S0 mode

(reflection)

+V13  = S31 x CSo + A31 x CAo  = S31  A31 x 

V22  = S22 x CSo + A22 x CAo  = S22  + A22 x x 

x 

Input
S0 mode

CSo

S0 mode

(reflection) Input
A0 mode

CAo

Sij or Aij Scaling factors of the S0 or A0 modes in Vij

CSo or CAo : A common function of S0 or A0 modes in Vij
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PZT A

(Excitation)

PZT B

(Sensing)
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Response at a Sensor PZT
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1. V. Giurgiutiu., "Lamb wave generation with piezoelectric wafer active sensors for structural health monitoring," SPIE. 5056, 111-122 (2003)

2. A. Raghavan et all, “Modeling of piezoelectric-based Lamb-wave generation and sensing for structural health monitoring,” SPIE. 5391 (2004)

3. Ajay Raghavan et all, “Finite-dimensional piezoelectric transducer modeling for guided wave based structural health monitoring,” Smart 
Mater. Struct., 14, pp. 1448-1461 (2005)

4. H. Sohn et all, “Lamb wave tuning curve calibration for surface-bonded piezoelectric transducers,” Smart Mater. Struct. 19, 015007 (2010)

(Ref 1)

(Ref 2)

(Ref 3)

(Ref 4)

• Is wavenumber.
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• The amplitudes of the S0 and A0 modes are functions of the excitation and sensing PZT

sizes (a and c)

• In the fixed distance between the sensing and excitation PZTs, signal phases does not

change with respect to the variations of the PZT size

• There is no coupled term between the excitation/sensing PZT sizes ( a and c) and distance

(rs)
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Three Noticeable Factors of Theoretical Equations for 

3D a Circular PZT Actuator and Circular PZT Sensor

‘Maclaurin series’, ‘asymptotic Hankel function’ and ‘poisson integral of the Bessel function’ are used for the

derivation of the analytical solution of the Lamb wave response at a circular PZT
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V = S = C =

Vij : Nine different signals measured from dual

PZTs

Sij and Aij : Scaling factors for the S0 and A0 mode

Circular PZT actuator & circular PZT sensor Dual PZT actuator & dual PZT sensor

Dual PZT Dual PZTCircular PZT Circular PZT

Formulation of the Decomposition Technique
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Detail Procedure of 

the Proposed Mode Decomposition Technique

1. A total of nine Vij are obtained by activating different parts (the outer ring, inner circle or

both) of the excitation and sensing dual PZTs

2. For the given sizes of the dual PZTs, the corresponding scaling factors (Sij and Aij) can

be analytically or experimentally computed.

3. The matrix C can be estimated by taking the pseudo-inverse of the scaling factor

matrix S and pre-multiply it to the matrix V.

4. Finally, either the S0 or A0 mode in any measured signal can be decomposed and

isolated.

 V = SC
†

S V = C  ‘†’ is the pseudo-inverse

Ex) The contribution of the S0 mode in V13 can be obtained as 0

13
( )

S

s
S C r . 

       The contribution of the A0 mode in V13 can be obtained as 0

13
( )

A

s
A C r . 
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 The effective PZT size becomes less than the physical PZT size due to bonding layer

 Material properties of the structure continuously vary due to temperature
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where 
11/ij ijS S S  

           11/ij ijA A A  

What is the practical problem?

Estimation of the scaling factors from measured signals

0 0

11 11
/ ( ( )) / ( ( ))

S S

ij ij ij s s
S S S S C r S C r   

Amplitude of the S0 mode in Vij Amplitude of the S0 mode in V11

( )
ij ij

S A is the normalized scaling factor  

Estimation of the Scaling Factors
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Estimation of the Scaling Factors (cont)

Requirement 

The first arriving S0 and A0 modes are well separated in the time domain so that their 
amplitude can be easily estimated. 

Problem

When the distance between the excitation and sensing PZTs is too short or there are 
multiple reflection paths, the estimation of the amplitudes of the first arriving S0 and A0

modes can be challenging.

Solution

A pair of excitation and sensing PZTs is placed with a longer spacing so that the first 
arrivals of the S0 and A0 modes can be well separated.

The normalized scaling factors estimated from a single long path can be
used for the mode decomposition in all the other paths with varying path
lengths as long as they use the same sizes of the dual PZTs.
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PZT C
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Sampling rate 5 MHz

Mesh size 1 mm x 1mm x 1mm

Software MSC/NASTRAN

4mm

9mm

5mm

Ring part

Circular 

part

Configuration of simulated plate Dimension of the dual PZT

3D Numerical Simulation
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11/ij ijS S S
, 11/ij ijA A A  

Numerical and theoretical normalized scaling factors 
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Experimental Setup
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- The dimension of each PZT :  

*  4 packaged dual PZTs

*  PSI-5A4E type

- Input signal : 

A 180kHz tone-burst signal with ± 10 peak-to-peak voltage  

- Sampling rate : 20MS/s

- Data averaging : 20 times 

PZT Actuator

PZT Sensor

Arbitrary Waveform 

Generator
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Data Acquisition System Specimen

Sensing

Actuating
Multiplexer

1
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4

1: Sending signal to Multiplexer

4: Sending signal to Digitizer

Test specimen Data acquisition system
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Comparison of Vij Measured from the Path AD
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• The amplitudes of the S0 and A0 modes are functions of the excitation and sensing PZT

sizes

• In the fixed distance between the sensing and excitation PZTs, signal phases does not

change with respect to the variations of the PZT size



This document contains confidential and proprietary information owned by 
KAIST and Boeing. The distribution is limited.

22

1000

420

PZT D

PZT B

PZT A

120

3
350

350

Unit: mm

1000

PZT C 

(back)

(Excitation) (Sensing)

V13

(Excitation) (Sensing)

V32

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22
-0.7

0

0.7

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22
-0.7

0

0.7

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22
-0.3

0

0.3

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22
-0.3

0

0.3

V
o

lt
a

g
e

(V
)

Time(ms)

V
o

lt
a

g
e
(V

)
V

o
lt

a
g

e
(V

)
V

o
lt

a
g

e
(V

)

S0(first arrival) S0(reflection)

S0(first arrival) S0(reflection)

(a)

(b)

(c)

(d)

A0(first arrival)

A0(first arrival)

Collocated Proposed

Collocated Proposed

Collocated Proposed

Collocated Proposed

Comparison between the S0 and A0 Modes Decomposed by 

the Proposed Technique and the Collocated PZTs (Path AD)

S0 mode in V13 

A0 mode in V13 

S0 mode in V32 

A0 mode in V32 

Test specimen

Signal notation



This document contains confidential and proprietary information owned by 
KAIST and Boeing. The distribution is limited.

23

Comparison of the Normalized Scaling Factors 

of the S0 and A0 Modes Obtained from the Paths AB and AD
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1. Fundamental Lamb wave modes (S0 and A0) modes are successfully 

decomposed by the proposed mode decomposition technique using a pair of 

dual PZTs

2. The S0 and A0 modes can be decomposed at any desired frequency without 

any other special tuning.

Future study

1. Extend the proposed concept to anisotropic structure and complex

geometries with stiffeners or welded joints

2. Effectiveness of the proposed technique on damage detection

Concluding Remarks

Summary
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Do You Have 

Any Questions ?

I would be happy to help
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Best Operating Conditions

(1) The target structure has a uniform thickness and isotropic material properties

(2) All the dual PZTs installed are identical in terms of their sizes and bonding conditions

(3) The driving frequency range is selected so that only the S0 and A0 modes are excited

(4) Spatial distribution of temperature over the specimen is uniform although temperature 

variation over time is allowed and has no effect on the proposed technique. 
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Literature Review : Conventional Transducers for

Selective Lamb Wave Generation and Sensing

1. Too heavy and bulky for online monitoring of structures (ex. airplanes)

2. Directionality for selective Lamb wave mode generation and sensing

3. Not suitable for deployment to large-scale structure due to relatively high cost

4. Manually adjustment of some parameters of the transducer (ex. the incidence angle or the ele

ment spacing)

1. Angle wedge tuning using contact and non contact type wedge transducer [Wilcox (2002)]

2. Wavelength-matched linear arrays, using comb transducers [Rose (1998)]

3. Point source point receiver (PS-PR) using Hertzian contacts [Degertekin (1996)]

Limitation

Conventional Techniques

(1) Angle wedge transducer

(2) Comb transducer

(3) Hertizian contact transducer

(1) (2) (3)
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where a1, a2 and a3 are the outer and the inner radii of the ring PZT and 

the radius of the inner circular PZT, respectively, 
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Comb transducer [Rose ( 1998)]

An array of PZTs with time delays [Gao (2007)]

Collocated PZTs on both surfaces [Kim (2007)]

Structure

Lamb wave
PZT

Tuning of the driving frequency [Giurgitiu (2003)]

Wedge transducer [Wilcox (2002)]

D C

BA

Plate (Intact)

PZT
S0

B

C

A0

B

C

Conventional Techniques for the Lamb Wave Decomposition
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Comb Transducer [ Rose ( 

An array of PZTs with time delays [ Gao (2007) ]

Collocated PZTs [ Kim and Sohn (2007) ]

Structure

Lamb wave
PZT

Tuning of the driving frequency [ Giugitiu (2005) ]

Wedge transducer [ Wilcox (2002) ]

D

A

Plate (Intact)

PZT
S0

A

D

A0

A

D

• Difficulty of setting the angle of incidence with appreciable accuracy

• Consideration of time delay due to block.

• Significant signal attenuation before impinging the inspection material

• Generation of additional reflected waves from interfaces

Problems

Conventional Techniques for the Lamb Wave Decomposition

- Wedge transducer -
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Comb Transducer [ Rose ( 

An array of PZTs with time delays [ Gao (2007) ]

Collocated PZTs [ Kim and Sohn (2007) ]

Structure

Lamb wave
PZT

Tuning of the driving frequency [ Giugitiu (2005) ]

Wedge transducer [ Wilcox (2002) ]

D

A

Plate (Intact)

PZT
S0

A

D

A0

A

D

Entrancesensors

S0 mode

A0 mode

Problems

Conventional Techniques for the Lamb Wave Decomposition

- Collocated PZTs -
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Comb transducer [ Rose (1998) ] 

An array of PZTs with time delays [ Gao (2007) ]

Collocated PZTs [ Kim and Sohn (2007) ]

Structure

Lamb wave
PZT

Tuning of the driving frequency [ Giugitiu (2005) ]

Wedge transducer [ Wilcox (2002) ]

D

A

Plate (Intact)

PZT
S0

A

D

A0

A

D

• Decomposition of Lamb waves at a specific frequency

• Needs for a multi channel data acquisition system

• Sensitive to prescribed time delay profiles or wavelength

Problems

Conventional Techniques for the Lamb Wave Decomposition

- Comb transducer -
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Comb Transducer [ Rose ( 

An array of PZTs with time delays [ Gao (2007) ]

Collocated PZTs [ Kim and Sohn (2007) ]

Structure

Lamb wave
PZT

Tuning of the driving frequency [ Giurgitiu (2005) ]

Wedge transducer [ Wilcox (2002) ]

D

A

Plate (Intact)

PZT
S0

A

D

A0

A

D

• Decomposition of Lamb waves at a

specific frequency

• Needs for a baseline tuning curve

Problems

Aluminum 2024-T3 1.07 mm Aluminum 2024-T3 7 mm

Conventional Techniques for the Lamb Wave Decomposition

- Tuning of the driving frequency -
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PZT A
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Rectangular PZT

(Excitation)

Rectangular PZT

(Sensing)

Circular PZT

(Excitation)

Rectangular PZT

(Sensing)

Rectangular PZT

(Excitation)

Rectangular PZT

(Sensing)

Cirucular PZT

(Excitation)

Circular PZT

(Sensing)

A 2D rectangular PZT sensor’s interaction 

with Lamb waves (Ref.1)

A 3D circular PZT actuator & a rectangular 

PZT sensor (Ref.2)

A 3D rectangular PZT actuator & a 

Rectangular PZT sensor (Ref.3)

A 3D circular PZT actuator & a circular 

PZT sensor (Ref.4)

Existing Theoretical Models for PZT Responses


